Исмагилов И.Г., Гаррис Н.А., Асадуллин М.З., Аскаров Р.М.

OAO "Баштрансгаз", Уфимский государственный нефтяной технический университет

ИМПУЛЬСНОЕ ТЕМПЕРАТУРНОЕ ВОЗДЕЙСТВИЕ НА КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ БОЛЬШОГО ДИАМЕТРА

ВВЕДЕНИЕ

Магистральный газопровод большого диаметра, проложенный в районах с континентальным климатом, несмотря на умеренные рабочие температуры, порядка 30°С, является мощным источником тепла [1]. Такой газопровод оказывает тепловое воздействие на окружающий его массив грунта, создавая зону теплового влияния до 10 м в сторону от трубы. Эффект суммируется, если в одном коридоре проложены несколько трубопроводов. Например, 3-хниточный газопровод Уренгой — Новопсков, диаметром 1420 мм, на участке Поляна — Москово имеет зону теплового влияния 50 м, что в 5 раз больше, чем на бывшем "горячем" нефтепроводе Гурьев — Куйбышев, диаметром 1020 мм.

Состояние грунта в сечении газопровода большого диаметра и изменение его характеристик определяется также климатическими условиями, протаиванием снежного покрова и насыщением грунтов паводковыми водами, засушливым периодом и периодом дождей и т.д.

Влажность массива грунта зависит от природных факторов, но локальное ее изменение вокруг магистрального газопровода может происходить и по техногенным причинам.

О ПЕРЕРАСПРЕДЕЛЕНИИ ВЛАГИ В ГРУНТЕ

В зоне теплового влияния трубопровода происходит перераспределение влажностного и температурного полей грунта под действием теплового потока от трубы к периферии, а также термодвижущих сил. Этот эффект известен и изучен в определенной степени для "горячих" трубопроводов [2], где эксплуатационные температуры гораздо выше. Миграционные потоки в зоне теплового влияния "горячего" трубопровода влекут за собой осушение грунта и являются превалирующими в процессе перераспределения влаги.

Более сложные процессы происходят вокруг подземных газопроводов. Здесь можно отметить три явления, примерно равные по значимости:

- 1. Трубопроводы большого диаметра при подземной прокладке нарушают гидрологический режим грунтов, создавая барражный и дренажный эффекты. В результате фильтрационное движение грунтовых вод либо затормаживается, создавая обводненные участки, либо, наоборот, образуется водный сток в виде дрен под нижней образующей трубы.
- 2. В зоне теплового влияния неизотермических газопроводов под температурным воздействием развиваются миграционные потоки. Однако, температурные напоры и градиенты вокруг газопроводов невелики, поэтому

влажность прилежащего к трубопроводу слоя грунта снижается лишь частично. Полной миграции влаги не происходит. На некотором удалении от трубы формируется переувлажненное кольцо грунта, которое аккумулирует влагу. Эта влага при снижении температуры газа и температурных напоров, возвращается назад к газопроводу.

3. Наиболее сложные процессы происходят в грунте, окружающем неизотермический газопровод большого диаметра. Практика эксплуатации магистральных газопроводов показывает, что в силу различных причин, температура газа при закачке в газопровод меняется импульсно, т.е. изменяется на несколько градусов в течение нескольких дней, или даже в течение дня. Так как газопровод является малоинерционной системой (по сравнению с нефтепроводом), то изменение температуры газа передается, как по "волноводу" (термин, предложенный в [3]), к начальному участку трубопровода (на расстояние 10...20 и более км) и вызывает импульсное изменение температуры в прилежащем слое грунта толщиной примерно 5...10 см.

Т.о., с изменением температуры газа изменяется и влажность грунта контактирующего с трубопроводом. Если температура газа меняется импульсно, то влажность грунта меняется также импульсно, но с некоторым запаздыванием, в силу тепловой инерции грунта.

ИМПУЛЬСНОЕ ДВИЖЕНИЕ ВЛАГИ КАК ФАКТОР, АКТИВИЗИРУЮЩИЙ КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ

Под действием знакопеременного температурного воздействия в грунте устанавливается импульсное движение влаги, контактирующей с трубопроводом. Очень вероятно, что именно этот эффект локального импульсного перемещения влаги, как в направлении, перпендикулярном оси трубопровода, так и в сечении трубы, по ее периметру, не только формирует, при прочих располагающих моментах, анодную и катодную зоны, но и активизирует электрохимические, биологические и пр. процессы микрокоррозионных элементов, развивающихся по типу КРН (коррозионного растрескивания под напряжением).

Анализ КРН [4] на обследованных учасках газопровода Поляна - Москово показал, что при прочих равных условиях, зоны периодического обводнения подвержены долее интенсивной стресс-коррозии (овраги, балки и т.д.).

Авторы [5], исследуя процессы КРН при высоком рН также отмечают, что важную роль в этих процессах играют сезонные колебания, контролирующие изменения параметров грунтовых электролитов.

Для формирования концентрированной среды с высоким рН катодный потенциал должен быть достаточно высоким. Но диапазон потенциалов, при котором происходит данный вид КРН, находится между естественным потенциалом коррозии трубных сталей и потенциалом регламентированной катодной защиты (850...). Сезонные изменения вызывают колебания параметров среды и потенциалов, таким образом создавая условия, способные вызвать КРН.

Хотим также отметить, что сезонные и климатические колебания температур начинаются на поверхности грунта, т.е достаточно далеко от трубы, и вследствие высокой теплоемкости и аккумулирующей способности грунта не

всегда могут достигать контура трубы. То же самое можно сказать об атмосферных осадках. Но тем не менее, исследователи отмечают эффект влияния сезонных колебаний влажности и периодического обводнения на процессы КРН [4,5].

Логично предположить, что колебания температуры газа, которые вызывают колебания влажности грунта на контуре трубы, имеют гораздо большее воздействие на развитие КРН, особенно в том месте, которое является очагом коррозионного разрушения. Фактически, процесс коррозионного разрушения на начальных участках развивается под прямым импульсным температурным воздействием газопровода

Это коррелируется с тем фактом, что на нефтепроводах не обнаруживается явление КРН. Действительно, нефтепровод, в отличие от газопровода, имеет большую тепло-гидравлическую инерцию, достаточную для гашения не только вибрационного, но и импульсного изменения давления и для сглаживания температурных колебаний по мере протекания жидкости через начальный участок трубопровода. Поскольку температура стенки трубы стабильна и влажность прилегающего грунта не изменяется, то побудительного момента для развития коррозионных трещин не имеется.

Фрактологическими исследованиями установлено [3], что трещина развивается в три этапа. На первом этапе под воздействием коррозионной среды образуется межкристаллитная трещина. На втором этапе полость трещины увеличивается вследствие коррозионного растворения ее стенок и воздействия механических растягивающих напряжений. На третьем этапе происходит механический долом. Авторы также обращают внимание на возможность обратимого чередования 1 и 2-го этапов в процессе развития коррозионного разрушения.

Как видно, знакопеременные миграционные потоки, сопутствующие импульсному температурному влиянию трубопровода на прилегающий грунт, активизируют волнообразные коррозионные процессы и, как следствие, дискретное разрастание трещин КРН.

В настоящее время при расчете напряженного состояния трубопровода, учете коррозионной активности грунтов и проектировании катодной защиты фактор перераспределения влажности и нарушения гидрологического режима грунтов не учитывается должным образом, поскольку вышеуказанные процессы еще полностью не изучены.

ОЦЕНКА ВЛАЖНОСТИ ГРУНТА ПУТЕМ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

Принимая во внимание важность рассматриваемого вопроса, был поставлен промышленный эксперимент и проведены исследования теплообмена магистрального газопровода Уренгой - Новопсков (участок Поляна – Москово). На начальном участке, за охранным краном и на расстоянии 6 км от компрессорной станции, были установлены замерные пункты № 1 и № 2, оборудованные закладными датчиками температуры — термометрами сопротивления, по 25 в каждом сечении. Наблюдения, обработка диспетчерских данных, замеры температур и построение температурных полей в указанных сечениях газопровода были начаты 15.03.00 г в плане мониторинга системы.

Экспериментальные температурные поля начального участка газопровода были использованы при решении обратной задачи теплопроводности. На основании закона теплопроводности Фурье (1) и метода смены стационарных состояний получены результаты, констатирующие факт импульсного изменения эффективного коэффициента теплопроводности грунта λ и его влажности W не только по контуру трубы, но и во времени.

$$q = \lambda \cdot \frac{\Delta t}{\Delta n} \cdot F, \tag{1}$$

где q — тепловой поток, λ - коэффициент теплопроводности грунта, $\Delta t/\Delta n$ — градиент температуры, F — площадь изотермической поверхности.

Для определения влажности была использована зависимость $\lambda = \lambda(W)$ для глинистого грунта. Полученные результаты приведены в табл. 1.

Изменение параметров теплообмена газопровода с грунтом (пункт №2)

Таблица 1

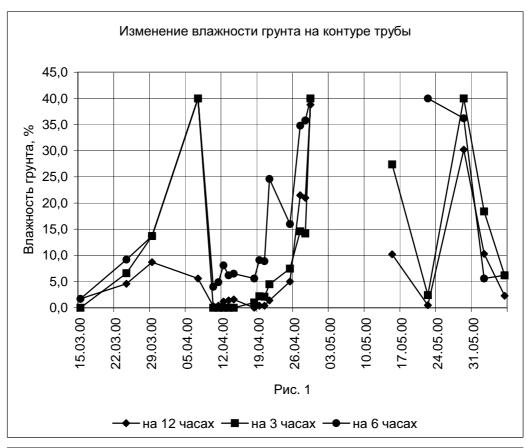
Дата	t _{газ} , °C	t _в , ∘C	q,	t _{rp} , °C			λ_{rp} , Вт/м 2 . $^{\circ}$ С			W, %		
			Вт/м.°С	на 12ч	на 3ч	на 6ч	на 12ч	на 3ч	на 6ч	на 12ч	на 3ч	на 6ч
14.03.00												
15.03.00	30	3	142,0	30,5	29,0	30,5	0,579	0,398	0,579	1,7	0,0	1,7
24.03.00	30	0	147,0	31,5	31,0	32,0	0,733	0,827	0,942	4,6	6,6	9,2
29.03.00	30	6	144,0	30,0	30,0	31,0	0,923	1,076	1,076	8,7	13,7	13,7
07.04.00	30	0	146,0	26,6	27,6	28,5	0,780	1,723	1,723	5,6	40,0	40,0
10.04.00	30	2	154,0	25,7	25,7	25,7	0,493	0,411	0,735	0,3	0,0	4,0
11.04.00	30	0	157,0	25,7	25,7	25,7	0,503	0,419	0,749	0,4	0,0	4,9
12.04.00	30	3	160,0	26,0	26,0	25,5	0,552	0,448	0,897	1,2	0,0	8,1
13.04.00	30	3	162,6	26,0	26,0	26,0	0,561	0,456	0,810	1,4	0,0	6,2
14.04.00	30	4	165,4	26,0	26,0	26,0	0,571	0,464	0,824	1,6	0,0	6,5
18.04.00	30	4	168,0	26,6	27,1	29,0	0,477	0,618	0,897	0,0	1,0	5,6
19.04.00	30	14	167,0	25,6	25,7	28,0	0,506	0,657	0,936	0,4	2,2	9,1
20.04.00	30	3	166,0	25,6	25,7	28,0	0,503	0,653	0,930	0,4	2,1	8,9
21.04.00	30	1	165,0	24,8	26,1	27,1	0,561	0,725	1,321	1,4	4,5	24,6
25.04.00	30	10	162,0	28,0	28,0	29,4	0,865	0,982	1,300	5,0	7,5	16,0
27.04.00	30	19	157,0	27,6	28,0	29,0	1,257	1,100	1,467	21,5	14,6	34,8
28.04.00	30	12	155,5	27,6	28,0	29,0	1,245	1,453	1,090	21,0	35,8	14,2
29.04.00	30	4	154,0	26,6	26,6	27,6	1,501	2,301	1,918	38,8	40,0	40,0
12.05.00	30	7	141,0									
15.05.00	28	5	140,0	26,1	26,1	27,1	0,981	1,365	2,242	10,2	27,4	
22.05.00	29	12	140,5	25,2	25,7	28,0	0,508	0,670	1,658	0,5	2,4	40,0
29.05.00	26	14	119,0	24,8	24,8	26,1	1,404	1,906	1,482	30,2	40,0	36,2
02.06.00	29	20	101,0	26,6	26,6	27,6	0,985	0,781	1,192	10,3	5,6	18,4
06.06.00	29	20	83,0	28,0	28,5	28,5	0,665	0,809	0,809	2,30	6,20	6,20

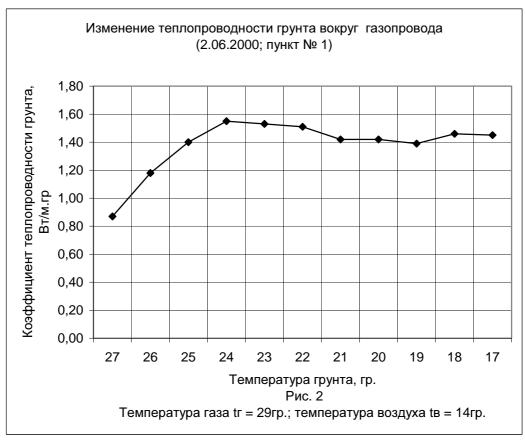
При длительном наблюдении было зафиксировано импульсное изменение влажности (0...40 % и более) в зоне контакта внешней поверхности трубопровода с грунтом почти синхронно изменению температуре газового потока.

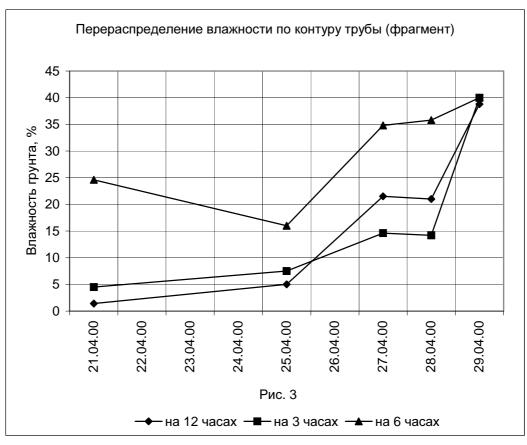
РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА НА МАГИСТРАЛЬНОМ ГАЗОПРОВОДЕ ПОЛЯНА-МОСКОВО

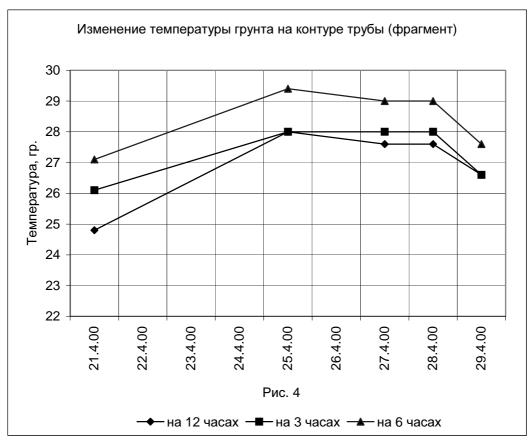
На рис.1 представлен график изменения влажности грунта, контактирующего с трубой, в позициях на "12, 3 и 6 час." по ходу газа. Отчетливо виден импульсный характер изменения данного параметра. На рис. 2 показано изменение теплопроводности грунта в сечении трубопровода. Как видно, влажность грунта вокруг газопровода определяется не только климатическими факторами, но и техногенными причинами. Например, 7 апреля 2000 года была осуществлена плановая остановка одного из компрессорных цехов. В результате температура газопровода на участке Поляна-Москово снизилась. При этом резко возросла влажность грунта, до 40% на нижней образующей. После возобновления подачи газа в трубопровод влажность грунта уменьшилась до 0...10%.

В последующий период, приходящийся на конец марта и начало апреля, в связи с таянием снежного покрова и образования водостока в районе прохождения трассы наблюдается значительное увеличение влажности, до 36,5...40 % и полного насыщения, не только в позиции"6 часов", но и по всему контуру трубы.


На фоне увеличения влажности грунта вокруг трубы за счет талых вод, проявляются более частые колебания, вызванные импульсным изменением, по меньшей мере, 3-х факторов. Это температура газа, температура воздуха и условия теплообмена на поверхности грунта (скорость ветра, осадки, солнечная радиация, образование наледей в оврагах и балках в осенний период и т.д.).


Интересно проследить взаимовлияние температуры и влажности по графикам. На рис. З показано изменение влажности по контуру трубы за недельный период эксплуатации газопровода. Сопоставляя эти графики с температурными кривыми (см.рис.4), можно видеть, что они хорошо коррелируются. В течение первых 4-х дней влажность грунта вокруг трубы понижается при одновременном повышении температуры. Напротив, в последующие 2 дня понижение температуры вызывает приток влаги к трубе и т.д.


Необходимо отметить, что подобные явления происходят в грунте при открытии или перекрытии перемычек между отдельными нитками газопровода. Это объясняется следующим образом: при изменении производительности газопровода тепловые потери в окружающую среду пропорционально увеличиваются или уменьшаются, что, в свою очередь, оказывает импульсное влияние на контактирующий грунт и его влажность.


Так как именно газопроводы большого диаметра подвержены разрушениям по причине КРН, то логично сопоставить эти два факта: импульсного изменения температуры и влажности в зоне ее максимального скопления (позиции "5...7 часов") и коррозионного разрушения на тех же позициях, и найти взаимосвязь между ними.

Импульсное изменение температуры стенки трубы вызывает синхронное изменение температуры прилегающего грунта и его влажности. Поэтому его стоит рассматривать как побудительный момент, активизирующий электрохимическую и биокоррозию, интегрально проявляющийся в дискретном растрескивании металла под напряжением и разрушении наружней поверхности трубопровода в направлении максимального развития напряжений.

Такое объяснение не противоречит модели био-коррозии [6], а, напротив, находится в соответствии с ней. Коррозионная трещина представляет собой широко раскрытую конусообразную полость, которая часто имеет несколько пасынковых трещин, и заполнена продуктами коррозии, в том числе, и органогенными карбонатными отложениями. В результате колебаний температуры стенки трубы, внутренних напряжений, влажности грунта и дискретного разрастания трещины периодически открывается доступ питательной среды и новых микроорганизмов в полость трещины

Это также объясняет и тот факт, что на линейных участках КРН обычно не обнаруживается. На защемленных линейных участках трещина закупоривается и больше не разрастается (бактерии замуровывают сами себя). На отводах трещина открывается снова и снова под действием высоких напряжений и подвижек, и обнажаются новые контактные поверхности на микроуровне.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно заключить, что импульсное изменение температуры стенки трубы на 1...3 и более градусов вызывает практически синхронное с температурой изменение влажности грунта, контактирующего с газопроводом, и активизирует коррозионые процессы.

Анализ показывает, что параметры теплообмена на начальном участке газопровода не стабилизируются, даже если температура подаваемого газа стабильна. Согласно табл.1 колебания температур на замерном пункте N2 достигали 6...7°C за указанный период.

Поэтому авторы предлагают стабилизировать параметры теплообмена не в начале трубопровода, а на критических участках. В соответствии с регламентом летние и зимние температуры в начале газопровода должны отличаться на $1\dots 2^{\circ}C$.

Стабилизация гидрологического режима грунта в активной зоне теплового влияния газопровода снижает риск развития КРН и повышает экологическую безопасность газопровода как промышленного объекта.

ЛИТЕРАТУРА

- 1. Филатова А.Н., Гаррис Н.А. Анализ и сопоставление теплообмена двух магистральных трубопроводов большого диаметра с окружающей средой. Интервал. Передовые нефтегазовые технологии. № 10 (21), 2001, С. 13 14
- 2. Новоселов В.В., Гаррис Н.А., Тугунов П.И. и др. Прогнозирование теплофизических свойств грунтов при выполнении расчетов неизотермических трубопроводов // ОИ ВНИИОЭНГ. Сер. Транспорт и хранение нефти. 1989. 31 с
- 3. Гареев А.Г., Иванов И.А., Абдуллин И.Г. и др. Прогнозирование коррозионно-механических разрушений магистральных трубопроводов /Научный, технический, социальный вклад газовиков XX века в развитие научнотехнического прогресса. М.: РАО "ГАЗПРОМ", предприятие "Сургутгазпром", 1997, 169 с.
- 4. Асадуллин М.З., Аскаров Р.А., Усманов Р.Р. и др. Практика реализации профилактических мероприятий по снижению аварийности по причине

коррозионного растрескивания под напряжением /Проблемы промышленной безопасности в системе магистрального трубопроводного транспорта. Материалы 1X Всероссийского семинара-совещания руководителей по надзору за магистральными трубопроводами... .4-8 июня 2001г. Госгортехнадзор России. Уфа, 2001, с. 124 – 126.

- 5. Сергеева Т.К., Турковская Е.П., Михайлов Н.П. и др. Состояние проблемы стресс-коррозии в странах СНГ и зарубежом //Газовая промышленность. Сер. Защита от коррозии оборудования в газовой промышленности: ОИ М.: ИРЦ Газпром, 1997. 88 с.
- 6. Отт. К.Ф. Механизм и кинетика стресс коррозии МГ. Газовая промышленность. 1999. № 7. С. 46 49.
- 7. Асадуллин М.З., Гаррис Н.А., Сыромятникова Е.В. и др. Анализ и прогнозирование теплогидравлических режимов участка газопровода Поляна-Москово//НТС по серии: Транспорт и подземное хранение газа. Изд. ООО "ИРЦ Газпром", 2000, \mathbb{N} 4, C.10-14